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Improvement in Performance of Thermal
Diffusion Columns on Heavy Water
Enrichment under Sidestream
Operations and Flow-Rate
Fraction Variations

Chii-Dong Ho™ and Sheng-Hung Chen

Department of Chemical and Materials Engineering, Tamkang
University, Tamsui, Taipei, Taiwan, R.O.C.

ABSTRACT

Development of the separation equation in a classical Clusius-Dickel
column with sidestream operations for the heavy water enrichment
has been accomplished theoretically. Performance of the modified
Clusius-Dickel column with sidestream operations and its corresponding
maximum separation was determined with the sidestream flow-rate
ratio at the feed position and top flow-rate fraction as parameters. The
effect of the sidestream operation of a modified Clusius-Dickel column
on separation efficiencies for the H,O-HDO-D,O system has been
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investigated theoretically and experimentally. The theoretical predictions
were in good agreement with the experimental results. The theoretical
results indicated that the maximum separation efficiency increases with
the side stream flow-rate fraction but decreases with feed flow rate and
are represented graphically and compared with that in a classical
Clusius-Dickel column. Considerable improvement in the device per-
formance is obtained by employing a modified Clusius-Dickel column
under sidestream operations and flow-rate fraction variations, instead of
using a classical Clusius-Dickel column.

Key Words: Thermal diffusion; Sidestream operations; Separation
efficiency; Heavy water enrichment.

INTRODUCTION

Thermal diffusion is an unconventional technique for separating isotopes
and rare gases. The separation technique is relatively expensive for energy
consuming due to the large temperature difference between the hot and
cold walls, so the possible application is limited to highly valuable sub-
stances for the economic sense. It was first used to separate uranium at
Oak Ridge during World War I1'"-* and several theoretical and experimental
approaches have been presented™ ' for the enrichment of heavy water in
the Clusius-Dickel column recently. Clusius and Dickel®”! first proposed
the separation mechanism and later Furry et al.®®! developed a complete
theory presentation of producing a cascading effect for a Clusius-Dickel
column.

Thermal diffusion combines the well-known fact that a net mass transport
in the radial direction resulted from a temperature gradient and density differ-
ences resulting in convective flow near the hot and cold walls. For the heavy
water enrichment by thermal diffusion in the H,O-HDO-D,O system coupled
with the equilibrium relation H,O + D,0 < 2HDO, the desired material
D,0, which moves toward the cold region, is carried downward by the con-
vective flow in the environs of the cold wall and concentrated in the bottom
basin. In fact, the significant factor of convective flow creates the desirable
cascading effect and undesirable remixing effect. Many attempts have been
made to change convective flow pattern either by suppressing the remixing
effect or enhancing the cascading effect, leading to improved thermal diffu-
sion columns with inclination,“o] rotation,!! moving wall,m] packing,[13]
and winding a wire helix.!"*

The scrubber strategy is to remove most of the airborne dust from the
blowing system or SO,/NO, from the flue gas. It is natural to speculate on
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the applicability of a scrubber to air pollution problems,'>'®! blowing venti-
lation,"' '8 and gas cleaning."'**” The sidestream operation may act as the
same role as a scrubber in the removal process and thus the separation effi-
ciency improvement in thermal diffusion columns is expected. In the present
study, a different approach is proposed to improve the separation efficiency in
thermal diffusion columns under sidestream operations at the feed position
with flow-rate fraction variations. The separation efficiency enhancement
in thermal diffusion columns with sidestream operations was compared
with that in a classical Clusius-Dickel column without sidestream opera-
tions under the same working dimensions. There are two purposes in the
present work: first, to develop the theoretical formulation for thermal
diffusion columns with sidestream operations; second, to investigate the
effects of the sidestream operation on separation efficiency and the sepa-
ration efficiency improvement, with the sidestream flow-rate fraction at
the feed position and the sidestream and top stream flow-rate fractions as
parameters.

MATHEMATICAL FORMULATIONS

Equal Mass Flow Rates at Top and Bottom Ends with
Sidestream Operations

Consider a continuous concentric-tube thermo-gravitational thermal dif-
fusion column of the thickness 2w between hot and cold plates filled with
water isotopes, as shown in Fig. 1 with r = op/0r = 0p/o under the equal
mass flow rate of both top and bottom product streams (07 = op = o). The
classical Clusius-Dickel column is the feed introduced at the center of the
column without the sidestream operations. The transport equation of heavy
water enrichment under sidestream operations with top and bottom product
streams withdrawn of equal mass flow rates at both ends, and the feed intro-
duced at the position L, from the top of the column and sidestream withdrawn
at the opposite side of the feed position, may be modified from the classical

Clusius-Dickel column'®!"! as follows:

7, = —0Cp = —oC, + HC,C, — Kddc; (1)
for the enriching section and

7, = 0Cr = 0C, + HC,C, — Kd;; )
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Figure 1. Schematic diagram of a continuous thermal-diffusion column with
sidestream withdrawn at the feed position under flow-rate fraction variations.

for the stripping section. The transport constants in the above equations are
defined by

_ aBrpg(2w)’B(AT)?

H —
6!uT

<0 fora<O 3)
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and

_ pg*Br 2w)B(AT)

K
9'u2D

+ 2wpDB (4)

while the pseudo concentration products, Ceé'e and CSCA'S defined in Eq. (5)
for enriching and stripping sections, respectively, were defined as

cC= C{0.05263 —(0.05263 — 0.0135K,,)

K 12
X c-o.oz7”1—(1— f)c}c&q} } 5)

in which the equilibrium constant K, for the following equilibrium relation

H,0 + D,0 < 2HDO (6)

is

« _ G _ MDOP 1919 o
“"C1C3 [HyO]D,0] 18 x 20

The values of the equilibrium constant are K, = 3.80 and 3.793, respectively,
at T=25°C and 30.5°C.**) There are only slight differences within the
operating temperature range.

The pseudo concentration products in Eqgs. (1) and (2) are linearized for
rather reasonable approximations ¢,C,=a,+b,C, and C,C, = a,+b,C,,
and Egs. (1) and (2) reduce to

dcCy A

e o' (Cy — Cp) + C,Cy = 0’ (Cy — Cr) + a,; + by Cy (8)
Z

dcC, , A ,

e =od(Cg—-C,)+C.C,=0(Cp—C,)+a.+b.C, 9)
4

with the boundary conditions

C,=C,=Cp at 7 =0 (10)
C,=Cr at =L, (11)
C.=Cp at 7 =-L (12)

and the following dimensionless variables

=B g i n-ra-o (13)

, Hz
I=—, 0= ==
K L~ L

o
H
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The degrees of separation, A, and A,, in the enriching and stripping
sections, respectively, were obtained by integrating Eqs. (8) and (9) with
the use of Egs. (10)—(12). The results are

as + beP —L'{(bs+0)
AS:CP—CT:m[e _1] (]4)
+b,C P
A= Cp—Cp=— e T 0CP [ L-00-0) _ ) (15)

bl =00~ { &

Combination of Egs. (14) and (15) yields the degree of the separation
for the whole column as

A=Cp—Cr=A+A, (16)

The appropriate values of a,, b, a,, and by may be determined separately
from Cp to Cp in the enriching section and from Cr to Cp in the stripping
section by the least-square method. Accordingly, minimizing the following
integration

Cp ~ 2
minR, = J [(as 4 b,C,) — cscs] dc, (17)
Cr
and
Cp ~ 12
minR, = J [(ae +b,C,) — cece] dc, (18)
Cp

Consequently one obtains

—b, 1 (¢ .
ag = . (CT + CP) + A 0, aso = _J CsCs dCs (]9)
2 AsJe,
6a,o(Cr + C 1 (¢ .
by = 12b,0 — ’O(TTZ”), byo = EJ 26, dc, (20)
b LG
ae = 2 (CB + CP) + de 0, e — _J Cece dCe (2])
2 A e,
6a, 1 (% .
be = 12b,0 — M beo = —J ¢, dc, (22)
Ae ;) Cp
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Making material balance around the entire column yields the concen-
tration at the feed position

orCr = (20+ (T,,)Cp = 0Cr 4+ 0Cp + apCp (23)
or
A, — Ay
Cp=Cp— 24
P FT o, (24)

where r = op/o is the mass flow-rate ratio of the sidestream product to
that of the top or bottom product stream. For the column without sidestream
operations, that is, r = 0, Egs. (14) and (15) could be reduced to the equations
of the classical Clusius-Dickel column. Substitution of Egs. (19)—(22)
and (24) into Egs. (14) and (15) gives Ay and A, in the implicit form
and the values of A; and A, may be determined by the successive iteration
method.

The concentrations of top and bottom product streams are thus calculated
from Egs. (14), (15), and (24)

A, + (14 A

Cr=Cp—A;=Cr— 25
T P F 24, (25)
1 A, + A
CB:CP+Ae:CF+(_|_r)7J’_S (26)
24r

Mass Flow-Rate Fraction Variations at Top End with
Sidestream Operations

Following the same derivation procedure in the previous section, the
transport equation of heavy water enrichment for continuous operations
with mass flow-rate fraction variations of top product stream under sidestream
operations, as shown in Fig. 1, was obtained accordingly

dCs / A
d_Z, = O-T(Cs - CT) + CsCs - O-/T(Cs - CT) +a;+ bscs (27)
dc, .
e = 0j(Cp — C,) + C,C, = d%(Cp — C,) + a, + b.C, (28)

in which o = o7/H and 0% = op/H.
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The results of the degrees of separation, A, and Ay, in the enriching and
stripping sections, respectively, were readily obtained by

s+ bC Y
bse sTr) 4 o

Ae —Cp—Cp= a.+b.Cp I:eL’(l—g)(bp—oJB) _ 1:| (30)
_beeL’(l—Z)(b(,—o’B) + o

and the values of a,, b,, a,, and by are thus calculated using Eqs. (17) and (18)
except that the concentration at the feed position was determined by the
material balance around the entire column with different mass-flow rates at
both top and bottom product streams

0rCr = (or + 0 + 0p)Cr = 0rCr + 05Cp + 0pCp (31
or
Cp=Cr+rrAy— (1 —rr —rp)A, (32)

where rr= op/(0r+ 0p+ 0p) = or/or and rp= op/(0r+ o+ 0p) =
op/op are the mass flow-rate fractions of the top product stream and side-
stream product, respectively. Equation (32) could be reduced to Eq. (24) as
the same mass flow rate of both top and bottom product streams with the
definition of r= op/or=rp/rr. By following the successive iteration
method in the previous section of the same mass flow rate at both product
streams, the repetitive calculations of Egs. (29), (30), and (32) with the use
of Egs. (19)—(22) yield the values of A and A,.

EFFECT OF OPERATING PARAMETERS ON
DEVICE PERFORMANCE

There are many design and operating parameters that affect the device
performance in the thermal diffusion column with sidestream operations. In
such an event, the mass flow-rate ratio of the sidestream product (r), mass
flow-rate fraction of top product stream (r7), feed flow rate (o), feed concen-
tration (Cr), and feed position ({) may be the most significant factors. The
variations of the degree of separation A with r, ry, o, Cr, and { are too
complicated to express mathematically. However, their relationship was pre-
sented graphically as shown in Figs. 2—8. The degree of separation A
decreases with increasing o’ (or mass flow rate of feed o), as confirmed by
Figs. 2 and 3 for the equal mass flow rate from both top and bottom products
and mass flow-rate fraction variations of top product stream under sidestream
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Figure 2. Effect of feed rate on the degree of separation with r and Cr as parameters.
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Figure 3. Effect of feed rate on the degree of separation with rrand Cr as parameters.
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Effect of feed position on the degree of separation with r as a parameter.
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Figure 5. Effect of feed position on the degree of separation with r7 as a parameter.
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Figure 6. Effect of feed concentration on the degree of separation for the device
under sidestream operations with feed concentration as a parameter.
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Figure 7. Effect of the mass flow-rate ratio of the sidestream product on the degree of
separation with feed concentration and feed rate as parameters.
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Figure 8. Effect of the mass flow-rate fraction of top product stream on the degree of
separation with feed concentration and feed position as parameters.
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operations, respectively. The tendency of the change of A with ¢ and Cr is
shown in Figs. 4 and 5 and Fig. 6, respectively. The tendency of the incre-
ment and decrement of A with r and ry for the equal mass flow rate from
both top and bottom product streams and mass flow-rate fraction variations
of top product stream under sidestream operations, respectively, is shown
in Figs. 7 and 8. The critical values of » and r7 during the calculation pro-
cedure should be selected in the allowable operation region for the device
with sidestream operations, as shown in Fig. 9. Moreover, the feed position
has much influence on the separation behavior, and the existence of {* with
flow-rate ratio variations of the sidestream product is also shown in Figs. 10
and 11.

EXPERIMENTAL STUDIES

A continuous-type concentric-tube thermal-diffusion column was con-
structed of stainless steel with the column length L = 122 cm, circumference
of length 277R = 10 cm, and uniform annular space 2w = 0.04 cm, in which
seven feed input and sidestream product points were drilled, to separate
heavy water from water-isotope mixtures, as shown in Fig. 12. Hot and cold
waters with specified temperature were supplied continuously from two
tanks through the inner tube and jacket, respectively, to impose a temperature
gradient on the mixture solution. The average surface temperatures of hot and
cold surfaces were measured to be 47°C and 14°C in this experimental work,
respectively, by four copper constantan thermocouples located on the surface
ends of each plate. The mean temperature of the mixture solution ((14 + 47)/
2 = 30.5°C) was used for the physical properties during the calculation pro-
cedure. The steady feed rate oy was regulated by a constant-head tank due
to gravitational force into the selected inlet point of the thermal-diffusion
column, and the flow-rate ratio variations of sidestream product were with-
drawn at the opposite side. The top and bottom product streams as well as
the sidestream product were attuned by needle valves and withdrawn continu-
ously at { = 1/3, 1/2, and 2/3 with the flow-rate fraction rz, (1 — ry — rp),
and rp, respectively, through cooling coils and rotameters to the collectors.
An automatic density meter (model DA-210, Kyoto Electronics) was use to
analyze at 25 + 0.05°C the outlet sample products. The DA-210 density/
specific gravity meter is of nature oscillation measurement type. Densities
and specific gravities of liquid or gaseous substances can be measured to
an accuracy of +1.0 x 10 °g / cm’. The specific gravity measurement was
used to determine the isotopic concentration of heavy water, and the mass
fraction of D,O was calculated by appropriate equations.”*** The
precision + 5.0 x 10> of D,O mass fraction was achieved by this analyzer
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Figure 9. The critical values of r and r during the calculation procedure should be
selected in the allowable operation region for the device with sidestream operations.
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Figure 10. Best feed position for the maximum degree of separation with » and Cr as
parameters.
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Figure 11. Best feed position for the maximum degree of separation with rr and Cr
as parameters.
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Figure 12. Flow diagram of the experimental system with sidestream operations.

in the present study. Comparisons of some results obtained in the experi-
mental works with those calculated from theoretical solutions are represented
in Figs. 13 and 14 under sidestream operations with Cr = 0.381 and Cr = 0.1.

SEPARATION EFFICIENCY IMPROVEMENT

The improvement of the modified thermal-diffusion column under side-
stream operations with the mass flow-rate fraction variations of the top
product stream and mass flow-rate ratio variations of the sidestream product
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Figure 13. Comparisons of the degree of separation obtained from theoretical predic-
tions and experimental works; r = 1.
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Figure 14. Comparisons of the degree of separation obtained from theoretical predic-
tions and experimental works; r =2 and r7 = 1/6.
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is best illustrated by calculating the percentage increase in separation effi-
ciency based on the classical Clusius-Dickel thermal-diffusion column as

A, (with sidestream) — A,_o(Clusius-Dickel column)

I(%) = - . 100%
(%) A,—_o(Clusius-Dickel column) x ’
(33)
0 A, ., ((with sidestream) — A,— ;0 5(Clusius-Dickel column)

I r,rr( 7z 0) = — :

A,—y,¢=0.5(Clusius-Dickel column)
x 100% (34)

A numerical example with some equipment parameters and physical
properties of the mixture for the heavy water enrichment is given as
follows:**

H=-1473 x 10" g/s = —0.53 g/hr

K =1549 x 10 g-cm/s = 5.5763 g - cm/hr

K., =3.793

L=122cm

B=27R =10cm

2w = 0.04 cm

AT =35K

T =3035K

Cr=0.1, 0.381, 0.5

AT /2w = 875K /cm

A better comparison between the modified thermal-diffusion column
under sidestream operations and classical Clusius-Dickel thermal-diffusion
column has been made with products rates held constant. Thus, the column
traffic and column usefulness would be the same. Some results are presented

in Tables 1 and 2 for the continuous-type concentric-tube thermal-diffusion
column with r and r7 as parameters under sidestream operations.

RESULTS AND DISCUSSIONS

The Degree of Separation in Devices with
Sidestream Operations

Figures 2 and 3 show the degree of separation A vs. feed flow rate o,
respectively, for equal mass flow rates from both top and bottom products
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Improvement in Performance of Thermal Diffusion Columns
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and mass flow-rate fraction variations of the top product stream under side-
stream operations with the mass flow-rate ratio of the sidestream product (7)
and mass flow-rate fraction of top product stream (r7;) as parameters while
Figs. 4 and 5 show the degree of separation A vs. feed position £. It is seen
for Figs. 2 and 4 that the larger the mass flow-rate ratio of the sidestream
product r is, the better the degree of separation is, especially when the feed
flow-rate oy decreases and the feed position is at {= 0.5. Although the
mass flow-rate fraction of top product stream ry has positive influences on
the degree of separation for the device under sidestream operations, the side-
stream effect by increasing rr and moving ¢ toward the enriching section
cannot compensate for the decrease of the pseudo concentration products,
cC. A graphical representation of the pseudo concentration products CC vs.
C was plotted from our previous work!* and the maximum value at
Cr=0.44. This is the reason why Cr= 0.381 performance is better than
Cr=0.1 and Cr= 0.5 performance, and hence the degree of separation
decreases with increasing the mass flow-rate fraction of top product stream
rp for { > 0.5 or as the feed concentration is greater than o > 0.32g/h for
r = 2. The effects of the feed concentration (Cr), mass flow-rate ratio of the
sidestream product (r), and mass flow-rate fraction of top product stream
(r7) on the degree of separation are shown in Figs. 68, respectively. The
variation of A with ¢ is rather complicated and hard to show mathematically.
However, there exists an optimal feed position {* for obtaining the maximum
degree of separation and the relation was presented graphically in Figs. 10
and 11 for operations with equal mass flow rates from both top and bottom
products and mass flow-rate fraction variations of top product stream,
respectively.

The experimental results of the degree of separation thus obtained with
feed concentration and feed flow rate as parameters and the corresponding
values of the theoretical predictions, calculated from Eqgs. (14)—(16) for
equal mass flow rates at top and bottom product streams, and from Egs. (29)
and (30) for the mass flow-rate fraction variations of top product stream, are
plotted in Figs. 13 and 14 for comparisons. Performance of the experimental
data is in good agreement with the theoretical predictions.

Improvement in the Degree of Separation with
Sidestream Operations

Figures 2—8 and Tables 1 and 2 show that the degree of separation, A, and
improvements of the degree of separation, /. and ., , respectively, of the
device under sidestream operations with the mass flow-rate ratio of the
sidestream product, mass flow-rate fraction of top product stream, feed flow
rate, feed concentration and feed position ({) as parameters. The degree of
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separation efficiency of the device with sidestream operations is much larger
than that of classical thermal-diffusion columns. The improvement of the
degree of separation /, increases with increasing the feed flow rate and mass
flow-rate ratio of the sidestream product while the improvements of the
degree of separation /., increases as the mass flow-rate fraction of top
product stream goes away from 0.2, especially for rr < 0.2 with r=0.1.
But the increase with feed flow rate o is high enough (say o > 2 g/h).

CONCLUSION

The theoretical and experimental studies of the separation efficiency for
the heavy water enrichment in a continuous concentric-tube thermal-diffusion
column with sidestream operations have been investigated in the present
study. The theoretical values of separation for various feed concentrations
and feed rates were calculated from Eqs. (14)—(16) and Egs. (29) and (30)
for equal mass flow rates from both top and bottom products and variable
mass flow-rate fractions of top product stream under sidestream operations,
respectively, by using the given transport coefficients and equilibrium
constant, and the effects of the mass flow-rate ratio of the sidestream
product, mass flow-rate fraction of top product stream, feed flow rate, feed
concentration, and feed position on the degree of separation are shown in
Figs. 2-8, respectively. The mass flow-rate fraction of the top product
stream and mass flow-rate ratio of sidestream product could suitably adjust
the remixing effect and effectively scrub the undesired isotopes of water in
the thermal-diffusion column, respectively, so the operating parameters r
and rp are introduced in this work. The separation efficiency in the new
device is superior to that in the classical Clusius-Dickel thermal-diffusion
column, as confirmed by Tables 1 and 2. Theoretical predictions, as shown
in Fig. 2 as well as Tables 1 and 2, indicate that the advantage of the
present device is evident. Moreover, the theoretical predictions confirm
pretty well with experimental results, as illustrated in Figs. 13 and 14.

NOMENCLATURE
a,, d Constants defined by Eqgs. (21) and (19), respectively (—)
A0, s Constants defined by Eqgs. (21) and (19), respectively (—)
b,, by Constants defined by Egs. (22) and (20), respectively (—)
beo, bso Constants defined by Eqgs. (22) and (20), respectively (—)
B Circumference of length 277R (cm)
C Mass fraction concentration of heavy water in the H,O-HDO-D,O

system (—)
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Cp C in the bottom product stream (—)

C, C in the enriching section (—)

Cr C in the feed stream (—)

Cp C in the sidestream product (—)

C C in the stripping section (—)

Cr C in the top product stream (—)

cC Pseudo product form of concentration for D,O defined by

) Eq. (5) ()

c.C, CC in the enriching section (—)

c,C, CC in the stripping section (—)

D Ordinary diffusion coefficient (cm2 /)

g Gravitational acceleration (cm/ s2)

H Transport coefficient defined by Eq. (3) (g/s)

I, Improvement of the degree of separation defined by Eq. (33) (—)

I, Improvement of the degree of separation defined by
Eq. 34) (=)

J—op Mass flux of heavy water in the x-direction due to ordinary
diffusion (g/cm?-s)

Je—m> Mass flux of heavy water in the x-direction due to thermal
diffusion (g/cm?-s)

J.—op Mass flux of heavy water in the z-direction due to ordinary
diffusion (g/cm?-s)

K Transport coefficient defined by Eq. (4) (g/s-cm)

K., Mass-fraction equilibrium constant of the H,O-HDO-D,O
system (—)

L The column length, (cm)

L Dimensionless coordinate defined by Eqs. (13) (—)

L, L’ in the enriching section defined by Egs. (13) (—)

L; L' in the stripping section defined by Egs. (13) (—)

r Mass flow-rate ratio of the sidestream product (—)

rr Mass flow-rate fraction of top stream product (—)

R Outside radius of inner tube in concentric tube columns, (cm)

R, The residual of square error in the enriching section defined by
Egs. (18) (—)

R, The residual of square error in the stripping section defined by
Egs. (17) (—)

T Mean absolute temperature (K)

T Arithmetic mean value of T of hot wall and cold wall (K)

X Coordinate in the horizontal direction (cm)

z Coordinate in the vertical direction (cm)

4 Dimensionless coordinate defined by Eq. (13) (—)
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Greek Symbols

Thermal diffusion constant for D,O in the H,O-HDO-D,0O
system, <0 (—)

(—dp/aT) evaluated at T (g/cm3 -K)

Degree of separation, Cg — Cr (—)

Degree of separation, Cx — Cp (—)

Degree of separation, Cp — C7 (—)

Difference in temperature of hot and cold plates (K)

Feed position (—)

An optimal feed position (—)

Absolute viscosity of fluid (g/cm - s)

The mass density evaluated at T (g/ cm’)

Mass flow rate of top or bottom product stream with equal mass
rate (g/s)

The dimensionless mass flow rate defined by Eq. (13) (—)
Mass flow rate of bottom product stream (g/s)

The dimensionless mass flow rate of the bottom product (—)
Mass flow rate of feed (g/s)

Mass flow rate of sidestream product (g/s)

Mass flow rate of top product stream (g/s)

The dimensionless mass flow rate of the top product (—)
Transport of heavy water along z-direction in enriching
section (g/s)

Transport of heavy water along z-direction in stripping
section (g/s)

One-half of the plate spacing of columns (cm)
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